ww.783成人A片,亚洲精品乱码久久久久久蜜桃91,www.71.com色婬免费,91午夜理伦私人影院
最近搜索:細胞培養(yǎng) 微生物學 分子生物 生物化學
首頁>>免疫學>>一抗>>細胞核因子NFKBp65抗體
細胞核因子NFKBp65抗體
  • 產品貨號:
    BN40766R
  • 中文名稱:
    細胞核因子NFKBp65抗體
  • 英文名稱:
    Rabbit anti-NFKB p65 Polyclonal antibody
  • 品牌:
    Biorigin
  • 貨號

    產品規(guī)格

    售價

    備注

  • BN40766R-100ul

    100ul

    ¥2360.00

    交叉反應:Mouse,Human(predicted:GuineaPig,Sheep,Horse,Cow,Pig,Dog,Rat) 推薦應用:WB,ICC,Flow-Cyt,ELISA

  • BN40766R-200ul

    200ul

    ¥3490.00

    交叉反應:Mouse,Human(predicted:GuineaPig,Sheep,Horse,Cow,Pig,Dog,Rat) 推薦應用:WB,ICC,Flow-Cyt,ELISA

產品描述

英文名稱NFKB p65
中文名稱細胞核因子NFKBp65抗體
別    名NF kB P65; NF-kB p65; NFKBp65; NF-κBp65; p65 NF kappaB; p65 NFkB; NFKBp65; RELA; Transcription Factor p65; v rel avian reticuloendotheliosis viral oncogene homolog A (nuclear factor of kappa light polypeptide gene enhancer in B cells 3 (p65)); V Rel Avian Reticuloendotheliosis Viral Oncogene Homolog A; v rel reticuloendotheliosis viral oncogene homolog A (avian); v-rel reticuloendotheliosis viral oncogene homolog A; p65NFKB; Avian reticuloendotheliosis viral (v rel) oncogene homolog A; MGC131774; NFKB 3; NFKB3; Nuclear Factor NF Kappa B p65 Subunit; Nuclear factor of kappa light polypeptide gene enhancer in B cells 3; Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B Cells; TF65_HUMAN.  




研究領域腫瘤  信號轉導  轉錄調節(jié)因子  
抗體來源Rabbit
克隆類型Polyclonal
交叉反應Human, Mouse,  (predicted: Rat, Dog, Pig, Cow, Horse, Sheep, Guinea Pig, )
產品應用WB=1:500-2000 ELISA=1:5000-10000 Flow-Cyt=1ug/Test ICC=1:100 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量61kDa
細胞定位細胞核 細胞漿 
性    狀Liquid
濃    度1mg/ml
免 疫 原KLH conjugated synthetic peptide derived from human NFKB p65:301-320/551 
亞    型IgG
純化方法affinity purified by Protein A
儲 存 液0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存條件Shipped at 4℃. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles.
PubMedPubMed
產品介紹NF-kappa-B is a ubiquitous transcription factor involved in several biological processes. It is held in the cytoplasm in an inactive state by specific inhibitors. Upon degradation of the inhibitor, NF-kappa-B moves to the nucleus and activates transcription of specific genes. NF-kappa-B is composed of NFKB1 or NFKB2 bound to either REL, RELA, or RELB. The most abundant form of NF-kappa-B is NFKB1 complexed with the product of this gene, RELA. Four transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011].

Function:
NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-kappa-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-kappa-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappa-B complex. Associates with chromatin at the NF-kappa-B promoter region via association with DDX1.

Subunit:
Component of the NF-kappa-B p65-p50 complex. Component of the NF-kappa-B p65-c-Rel complex. Homodimer; component of the NF-kappa-B p65-p65 complex. Component of the NF-kappa-B p65-p52 complex. May interact with ETHE1. Binds AES and TLE1. Interacts with TP53BP2. Binds to and is phosphorylated by the activated form of either RPS6KA4 or RPS6KA5. Interacts with ING4 and this interaction may be indirect. Interacts with CARM1, USP48 and UNC5CL. Interacts with IRAK1BP1 (By similarity). Interacts with NFKBID (By similarity). Interacts with NFKBIA. Interacts with GSK3B. Interacts with NFKBIB (By similarity). Interacts with NFKBIE. Interacts with NFKBIZ. Interacts with EHMT1 (via ANK repeats) (By similarity). Part of a 70-90 kDa complex at least consisting of CHUK, IKBKB, NFKBIA, RELA, IKBKAP and MAP3K14. Interacts with HDAC3; HDAC3 mediates the deacetylation of RELA. Interacts with HDAC1; the interaction requires non-phosphorylated RELA. Interacts with CBP; the interaction requires phosphorylated RELA. Interacts (phosphorylated at 'Thr-254') with PIN1; the interaction inhibits p65 binding to NFKBIA. Interacts with SOCS1. Interacts with UXT. Interacts with MTDH and PHF11. Interacts with ARRB2. Interacts with human respiratory syncytial virus (HRSV) protein M2-1. Interacts with NFKBIA (when phosphorylated), the interaction is direct; phosphorylated NFKBIA is part of a SCF(BTRC)-like complex lacking CUL1. Interacts with RNF25. Interacts (via C-terminus) with DDX1. Interacts with UFL1 and COMMD1. Interacts with BRMS1; this promotes deacetylation of 'Lys-310'. Interacts with NOTCH2 (By similarity). Directly interacts with MEN1; this interaction represses NFKB-mediated transactivation. Interacts with AKIP1, which promotes the phosphorylation and nuclear retention of RELA. Interacts (via the RHD) with GFI1; the interaction, after bacterial lipopolysaccharide (LPS) stimulation, inhibits the transcriptional activity by interfering with the DNA-binding activity to target gene promoter DNA.

Subcellular Location:
Nucleus. Cytoplasm. Note=Colocalized with DDX1 in the nucleus upon TNF-alpha induction. Nuclear, but also found in the cytoplasm in an inactive form complexed to an inhibitor (I-kappa-B). Colocalizes with GFI1 in the nucleus after LPS stimulation.

Post-translational modifications:
Ubiquitinated, leading to its proteasomal degradation. Degradation is required for termination of NF-kappa-B response.
Monomethylated at Lys-310 by SETD6. Monomethylation at Lys-310 is recognized by the ANK repeats of EHMT1 and promotes the formation of repressed chromatin at target genes, leading to down-regulation of NF-kappa-B transcription factor activity. Phosphorylation at Ser-311 disrupts the interaction with EHMT1 without preventing monomethylation at Lys-310 and relieves the repression of target genes.
Phosphorylation at Ser-311 disrupts the interaction with EHMT1 and promotes transcription factor activity. Phosphorylation on Ser-536 stimulates acetylation on Lys-310 and interaction with CBP; the phosphorylated and acetylated forms show enhanced transcriptional activity. Phosphorylation at Ser-276 by RPS6KA4 and RPS6KA5 promotes its transactivation and transcriptional activities.
Reversibly acetylated; the acetylation seems to be mediated by CBP, the deacetylation by HDAC3 and SIRT2. Acetylation at Lys-122 enhances DNA binding and impairs association with NFKBIA. Acetylation at Lys-310 is required for full transcriptional activity in the absence of effects on DNA binding and NFKBIA association. Acetylation can also lower DNA-binding and results in nuclear export. Interaction with BRMS1 promotes deacetylation of Lys-310. Lys-310 is deacetylated by SIRT2.
S-nitrosylation of Cys-38 inactivates the enzyme activity.
Sulfhydration at Cys-38 mediates the anti-apoptotic activity by promoting the interaction with RPS3 and activating the transcription factor activity.
Sumoylation by PIAS3 negatively regulates DNA-bound activated NF-kappa-B.

Similarity:
Contains 1 RHD (Rel-like) domain.

SWISS:
Q04206

Gene ID:
5970

Database links:

Entrez Gene: 5970 Human

Entrez Gene: 19697 Mouse

Entrez Gene: 309165 Rat

Omim: 164014 Human

SwissProt: Q04206 Human

SwissProt: Q04207 Mouse

Unigene: 502875 Human

Unigene: 249966 Mouse

Unigene: 19480 Rat



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.

轉錄調節(jié)因子(Transcriptin Regulators)
NF-κBp65是一種重要的轉錄因子,NF-kBp65可激活參與炎癥、細胞增殖、細胞凋亡等基因的調節(jié),影響著細胞的凋亡,同時影響著腫瘤細胞對細胞毒性藥物及離子輻射的敏感性。ras基因誘導的致癌突變作用需NFkB的活化,提示NFkB在致癌發(fā)生方面可能起一定作用;另有文獻報道,在乳腺癌、非小細胞性肺癌、甲狀腺癌、T或B淋巴細胞白血病及病毒誘變導致的腫瘤等人類腫瘤中,NFkB活化或表達。
NF-кB可以保護細胞免受腫瘤壞死因子以及電離輻射等引起的凋亡作用,而抑制NFkB的表達可以增加TNF等引起的細胞凋亡,以及增加化療及放療對腫瘤細胞的敏感性。











































image.png

image.png

image.png

image.png

久久久久久九九99精品 | 欧美成人精品免费17c | 亚洲BV无码精品色午夜蜜桃 | 91精品国产日韩91久久久久久 | 无码人妻一区二区三区免费n狂飙 | 成人A片产无码免费奶头动态图 | 无套中出丰满人妻无码 | 成人精品鲁一鲁一区二区 | 午夜拍拍拍拍拍拍拍拍拍拍拍 | 蜜臀久久99精品久久久无需会员 | 久久久久无码人妻一区二区三区 | 国产一二三精品无码不卡 | 成人无码精品一区二区黑寡妇在线 | 老妇人高潮一区二区电影 | 亚洲无码电影在线观看 | 一区二区三区四区在线 | 91尤物福利视频 | 国产农村一级特黄妇女A片一 | 3d动漫精品啪啪一区二区 | 国产水多毛多A片直播 | 污网站免费观看永久免费 | 精品夜欧美草草极品久亚洲码色 | 四川BBB搡BBB爽爽爽欧美 | 精品人麦少妇嫩AV无码 | 无码日本精品久久久久久蜜桃 | 国产高清 精品丝瓜 | 国产寡妇婬乱A毛片视频小说 | 人人澡人人爽人人人妻少妇 | 国产精品久久久久毛片大屁完整版 | 女人一级A片免费播放 | 大黑人狂躁美女大BBBB小说 | 懂色AV 粉嫩AV 蜜乳AV | 免费国产传媒av在线观看 | 久久国产精品波多野结衣AV孕妇 | 欧美日韩r级视频手机在线 一区二区三区四区福利视频 | 亚洲AV无码乱码精品裸果 | 東北老熟女黃色A片 | 91精品成人无码A片 美女黄视在线免费观看 | 黄色性片免费在线观看 | 一级老太婆毛片免费播放 | 91精品久久久久久久久无码果冻 |